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Multipoint constraint methods for moving body and
non-contiguous mesh simulations‡
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SUMMARY

A sliding mesh method is demonstrated for moving body simulations involving thermal and �uid
problems. Static problems with non-contiguous mesh constructions are also solved using the same
methodology. The proposed algorithm employs a parallel implementation of multipoint constraints with
an e�cient node-in-mesh search procedure. A simple method for treating the problem of partially
covered=exposed element surfaces is also summarized. Several examples of static and dynamic thermal
conduction and viscous �ow problems illustrate the algorithms. Published in 2004 by John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Bodies with prescribed relative motions or deforming bodies responding to induced forces are
often di�cult to accommodate in a computational analysis, in part, because of the required
mesh motions and mesh update strategies. Fluid dynamics problems, described in an Eulerian
reference frame accompanied by the Lagrangian motion of a body, are typical of this type of
computational di�culty. Problems of this type are usually denoted as �uid–structure interaction
(FSI) problems. Another common example of this type of problem is the relative motion of
electrically conducting bodies within a magnetic �eld, with or without an accompanying �uid
motion. Finally, contact mechanics for thermal, structural and=or electrical problems often
involve the relative motion of di�erent regions and the resulting surface mechanics. In all
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472 D. K. GARTLING

of these cases, at least part of the computational di�culty is due to the need to resolve
surface interactions between regions that are most naturally described with independent, non-
contiguous meshes.
Because of the wide variety of interaction problems, a broad spectrum of computational

methods have been developed and demonstrated. Since the primary interest here is in �uid and
thermal problems, the following descriptions will be focused on those areas; the more com-
plex solid mechanical contact and deformation problem is not considered. Of the work in �uid
dynamics, the interface tracking and interface capturing strategies outlined and demonstrated
by Tezduyar et al. [1–3] are the most noteworthy for their wide applicability and robustness;
an excellent summary of this work can be found in Reference [4]. In general, these front
tracking methods use an Arbitrary Lagrangian–Eulerian (ALE) formulation, in a space–time
framework. Stabilizing procedures, such as streamline upwind Petrov Galerkin (SUPG) [5]
and pressure stabilizing Petrov Galerkin (PSPG) [6], are an essential part of the algorithms.
For regions involving limited motions, mesh moving schemes are used for the �uid domain.
The requisite mesh motion is determined by solution of the equations for an elastic body.
When deformations become large, mesh motion is combined with the judicious use of remesh-
ing to achieve a useful overall method. Automated mesh generation is an important ingredient
in this approach and therefore suggests the use of tetrahedral �nite elements or volumes in
large parts of a complex domain. The interface capturing methods outlined in Reference [4]
use volume of �uid [7] and level set [8] ideas as a base with numerous enhancements for
accuracy and robustness; the implementation is in the space–time framework. A variety of
similar techniques have been developed for more specialized applications, including those
employed by Lynch [9], Cairncross et al. [10], L�ohner [11], Cruchaga [12] and others. An-
other type of �uid–structure interaction method is the immersed boundary method originated
by Peskin [13, 14] with its later implementation in a �nite element method due to Zhang
et al. [15]. The �ctitious domain method due to Glowinski et al. [16] has also been used
by Bertrand et al. [17] for relative motion problems. Each of these methods have advantages
and disadvantages, with none being universally applicable. Continuous remeshing would be
the most general but also the least a�ordable for large, complex �ows. The work described
here is focused on the motion of rigid bodies; deforming bodies could be processed in the
current scheme but are not the primary concern in this work. The approach to be evaluated
employs ‘sliding’ meshes and multipoint constraints to continually reattach the moving mesh
regions to the nonmoving mesh regions. This is similar in spirit to mortar methods [18] and
the shear-slip mesh update method of References [21, 22], though it is simpler to implement
and has utility beyond relative motion problems. Multipoint constraints, as described here,
also have use in simplifying mesh construction through non-contiguous meshing and meshes
with varying element geometries and interpolation orders. Components of the present approach
also have utility in the implementation of physical boundary conditions such as contact and
periodic boundaries.
The plan of the paper is as follows. The next section outlines the continuum application

areas and the components of the algorithm and is followed by a description of the basic search
procedure that is central to the e�cient implementation of the technique. A short section
then discusses the constraint equations needed and their implementation in several types of
mechanics applications. A section of example simulations demonstrates the use of the method
for thermal and �uid problems in both static and dynamic situations. Some conclusions and
observations are at the end of the paper.
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2. NUMERICAL METHOD

2.1. Continuum problems

The sliding and non-contiguous mesh procedures have great generality and have been
applied to thermal conduction problems, non-isothermal, incompressible, viscous �ow prob-
lems, and quasi-static electromagnetics. As the continuum description of these problems is
standard, the �eld equations for all of these applications will not be reiterated here. A sum-
mary description of each formulation will be su�cient. The time-dependent, thermal con-
duction problem was described in a Lagrangian frame and used a Galerkin �nite element
approximation for spatial discretization. Standard linear and quadratic temperature interpola-
tion on two- and three-dimensional elements was employed. Prescribed rigid material motions
are easily accommodated in the simulation software and material deformation and motion
can be included through coupling with a solid mechanics simulation. For the non-isothermal,
viscous �ow application, the moving mesh region was described by an Arbitrary Lagrangian
Eulerian (ALE) formulation; the stationary mesh regions used a standard Eulerian formulation.
The �eld equations of mass, momentum and energy were discretized in primitive variable form
with a Galerkin-based �nite element method. A mixed interpolation method was used with
quadratic interpolation for the velocity and temperature on triangles, quadrilaterals, hexahe-
drons and tetrahedrons. The pressure was interpolated on each element with either continuous
or discontinuous linear functions. The �uid description in an ALE formulation is given by
the continuity and momentum equations as

@ui
@xi
=0 (1)

�
@ui
@t
+ �(uj − umj )

@ui
@xj

=
@�ij
@xj

+ �fi (2)

where � is the �uid density, ui is the velocity, �ij is the stress tensor and fi is the body force
vector. The mesh velocity is umj and is required in the advection term whenever mesh motion
is employed. A similar advection term is required in the �uid energy equation when the �ow
is non-isothermal.
Though not detailed or demonstrated in the present work, the relative motion algorithms

are also applicable to problems in quasi-static electromagnetics. For this type of applica-
tion a nodal-based �nite element method for the electric scalar potential and the magnetic
vector potential was used for the development. The equations were discretized in both
Lagrangian and Eulerian formats; the Eulerian description again required an ALE type
advection term similar to the one in (2) for describing mesh motion in the magnetic equa-
tion. A gauge condition, when needed, was enforced with a penalty method. Linear and
quadratic interpolation for the potentials was used over a variety of two and three dimensional
elements.
The computational implementation for each of these applications was designed for use

on both single processor and massively parallel, distributed memory computers. The parallel
implementation was based on domain decomposition and the use of MPI [19].
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2.2. Sliding mesh method

Sliding mesh methods are not new but have been used previously in electromagnetics for
rotary motion simulations (e.g. Reference [20]) and in �uids for both translational and ro-
tational motions (e.g. References [21, 22]). Many of these implementations employ a mortar
�nite element method, though commercial software implementations seem to favour �nite vol-
ume methods with a �ux matching algorithm at the moving interfaces. The implementation
proposed here is designed to force continuity of the dependent variables across the interface
or a speci�ed jump in the dependent variable. The method is intended for large scale appli-
cations with numerous constraint surfaces; e�cient implementation in both single processor
and parallel environments is also a requirement. Though the description presented here is for
object–object interactions with an intervening �uid region, the method generalizes to other
types of interactions. A �uid region around the body or bodies in relative motion is not
required but provides the most general and most complex situation.
A schematic of a typical case is shown in Figure 1 where a solid object is prescribed

to move relative to another solid region. The region between the solids is �lled with an
incompressible, viscous �uid. A simple geometric surface is de�ned between the solids along
which the meshes attached to the two solids will slide. For translational motions the intervening
surface will be a plane and for rotational motions the surface will be a cylinder or sphere.
Typically, the one mesh region is labelled the master and the other mesh region is labelled the
slave. Along the common mesh interface the meshes move such that the nodes of the slave
mesh are always in contact with the master mesh elements. At each time in the simulation,

Figure 1. Schematic of a rigid body moving in a �uid relative to a stationary
body. The slide surface is circular.
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constraint conditions are developed that constrain some or all of the dependent variables from
the slave mesh to be the interpolants of the variables in the master mesh. The kinematics of
the mesh surfaces are assumed to be known and physically valid, i.e. interpenetration of the
meshes and the development of mesh overlap and voids are not considered. Experience has
shown that the occurrence of small overlaps, gaps and the use of non-zero capture distances
can be tolerated with the energy and electromagnetic equations.
As outlined above, this construction is geometrically very limiting since only simple, pre-

scribed translational and rotational motions can be accommodated. However, a surprising
number of complex simulations can make use of this approach. In addition, this method can
be combined with other algorithms to allow more complicated simulation options. Some of
these possibilities are listed here.

1. Within both the slave and master regions, additional mesh motion can be accommodated
independent of the sliding motions. Mesh motion governed by the equations of elastic-
ity [4, 10] are particularly useful in this context. With this type of mesh motion, small
deformations of the object can be considered. Remeshing within each region would allow
large deformations of the object.

2. Multiple sliding surfaces can be de�ned to allow more general motions. Rotational re-
gions inside of sliding regions are easily de�ned as are multiple rotational regions.

3. The kinematics of the slave region do not always have to be prede�ned. The response of
the solid region to �uid forces can be de�ned from Newton’s law of motion and mesh
motion developed from the resulting integration.

4. When the intervening �uid layer is absent, this approach is virtually the same as the
mechanical contact algorithm without deformation. Object–object surface interactions are
easily implemented as either continuity in the dependent variables or enforcement of a
�ux condition at the interface. In this case, object motions are arbitrary with contact,
sliding and=or release being easily modelled.

5. In static mesh situations, the multipoint constraint method provides an e�ective method
for joining non-contiguous meshes and thus simplifying the mesh generation process.

6. Also, in static situations, the multipoint constraint algorithm allows easy implementation
of periodic boundary conditions.

Two primary developments are required for the general sliding mesh implementation: an
e�cient node-in-mesh search method and the construction and data handling of constraint
equations. The search method was of primary importance since it is generally required to �nd
the new location of the slave (sliding) nodes on the master (non-sliding) elements at every
time step. For the sliding mesh case, the slave nodes and master elements are known lists that
are generated from the problem input in the same way as surface boundary conditions. When
object to object contact is considered, the kinematics will dictate which nodes and surfaces
must be included in the search list and in some cases this may include the entire surface
of each object. Because of the possible distribution of node and element data across many
processors, this type of search requires careful consideration to ensure that a scalable algorithm
is produced. The procedure used here to distribute the data and perform the node-in-element
search was originally developed for the mechanical contact problem by Plimpton et al. [23].
The basic method was later adopted for use in parallel data transfer between multiple grids;
this version is the basis for the present implementation. The method uses a recursive bisection
method to organize the data and localize the search; Newton’s method is used to �nd the
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Figure 2. Schematic of non-contiguous meshing of contacting solids with
partially covered/exposed element faces.

local co-ordinates of the slave node within an element. A rendezvous decomposition algorithm
gathers slave nodes and master elements that are geometrically ‘close’ using a recursive
co-ordinate bisection method due to Berger and Bokhari [24]. The original data transfer search
and interpolation algorithm [23] was altered to provide additional data to each slave node
owning processor. For each slave node, the master element number, element type, material
identi�er, nodal connectivity and local element co-ordinates for the slave node position in the
element, were returned to the processor. As an option, the interpolated dependent variables
at the slave node location could also be transferred; this was for use in implementing �ux
boundary conditions, such as thermal or electrical contact and �uid slip.
For applications involving object to object contact a second search may be required. This

situation occurs when non-contiguous meshes are coupled, resulting in partially exposed el-
ement surfaces that have �ux type boundary conditions applied. Figure 2 shows a heat con-
duction example where the horizontal top surface of the bottom block has partially exposed
(covered) element faces. It is assumed that the exposed surfaces have a �ux type boundary
condition applied, such as a convection coe�cient or black body radiation. A simple but e�ec-
tive method for boundary condition application involves determining which surface quadrature
points are uncovered and will therefore participate in the integration of the surface boundary
condition. By knowing the quadrature points for each element surface in the interface, the
node (point)-in-element search can be used again to determine which quadrature points are
exposed=covered. A more accurate, but more complex method for treating partially covered
element surfaces was developed by Rashid [25]. The performance of the simple method pro-
posed here is demonstrated in a later section. Note that when the partially exposed faces are
part of a radiation enclosure, the problem is somewhat more di�cult. An accurate view factor
computation requires the irregular shaped face to be precisely described and an integration
performed over the area.
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The second part of the multipoint constraint=contact algorithm involves the development of
the constraint equations and their implementation in the equation solver. For each degree of
freedom to be constrained (interpolated) at a slave node, a constraint relation is constructed.
Using the temperature as an example, a constraint condition may be expressed as

CT= ITc +CkTk =Fc (3)

where Tc are constrained (slave) temperatures, Tk are ‘known’ nodal point temperatures from
the master element, I is the identity matrix and Ck is the constraint coe�cient matrix. The
entries in Ck are the shape function interpolation values for the slave node location in the
master element. The constraint relation in (3) can be implemented using either a Lagrange
multiplier method or a penalty method. The approach used here is a penalty method that is
written as

KcT=CTQCT=CTQFc =Gc (4)

where Q is a matrix of penalty coe�cients and Kc;Gc are the constraint arrays added to the
global matrix system.
The penalty method was selected because it introduces no additional degrees of freedom and

is very simple to implement in a general application code. Penalty constraints may increase the
bandwidth of the global matrix but this is only signi�cant for direct methods for solving
the matrix problem. The entries in the Kc (or C) matrix are known when the locations
of the slave nodes in the master elements are determined. This data comes from the search
procedure. The connectivity for the Kc matrix also comes from the search algorithm and
forces the communication paths to be established dynamically at the solver level. A general
interface for solver libraries [26] has been developed that accommodates the o�-processor
communications required by the application code when using constraints.
The remaining parameters to be speci�ed in (4) are the penalty coe�cients in the � ma-

trix. The Kc matrix is added to the global matrix and should be dimensionally consistent with
the overall equations. For the heat conduction case, the penalty coe�cient should be de�ned
according to Q∼ kh where k is the thermal conductivity for the slave material and h is a
length scale for the mesh at the constraint location. The penalty coe�cient for slave node i
is most conveniently set for computations by de�ning �i= SKii where S is a user de�ned
scale factor and Kii is the diagonal matrix entry for the global slave equation. Experience
has shown that for single precision computations a scale factor of 101 to 103 is adequate to
ensure satisfaction of the constraint without adversely a�ecting the matrix solver. Scaling of
the diagonal maintains dimensional consistency even when the di�usion operator is augmented
with advection terms.
For general use in multiphysics simulations, a few other issues must be addressed by the

application code. In some cases there may be di�erences in mechanics phenomena across the
multipoint constraint or contact interface. For example, if the constraint occurs at a �uid=solid
boundary, the temperature will normally be constrained to be continuous while the velocity
components will have a boundary condition applied. The search procedure must be able to
recognize and record di�erences in materials or mechanics across the interface. A similar
situation occurs when dependent variables are interpolated di�erently in di�erent element types
or di�erent material regions. A node based continuous pressure approximation would imply
the need for a constraint condition; a discontinuous pressure approximation would not require
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constraints on the pressure. Finally, for periodic boundary conditions a geometric mapping
from the slave surface to the master surface must be speci�ed so that the node-in-element
search can be used without modi�cation. In the present applications, only simple translations
and rotations of planar periodic surfaces have been implemented. Note that the meshing for
the master and slave surfaces in the periodic case need not be contiguous.

3. EXAMPLE SIMULATIONS

The multipoint constraint methods and sliding mesh procedures outlined above have been
installed in several mechanics codes. These include a thermal analysis code [27], a viscous,
incompressible �uid dynamics code [28] and a quasi-static electromagnetics code [29]. Ex-
ample simulations have been completed on several demonstration problems using both single
and multiple processor machines. Only thermal and �uid applications are illustrated here with
the electromagnetic cases to be presented elsewhere.

3.1. Multiblock thermal conduction

The �rst example is a static thermal conduction problem involving multiple blocks attached to
a thick plate as shown in Figure 3. The blocks of various geometries and thermal conductivities
are all meshed independently and are then attached to the plate via the previously described
multipoint constraint; trilinear brick elements are used throughout this example. The bottom of
the plate is subjected to a speci�ed heat �ux (q=10:0) or temperature (T =1000:0) boundary
condition. The top of each block loses energy to the surroundings through a convective
boundary condition with speci�ed heat transfer coe�cient and reference temperature. The
heat transfer coe�cients are di�erent for each block (see Figure 3) though the reference
temperature is uniform (Tref = 400:0). The exposed portion of the top of the plate is also

Figure 3. Mesh geometries for the thermal conduction problem with multiple blocks
attached to a thick plate. Thermal properties for plate: k =0:06; h=0:01, annulus:
k =0:12; h=0:04, L block: k =0:10; h=0:01, semicircular block: k =0:06; h=0:004, square
block: k =0:01; h=0:008, disc: k =0:10; h=0:008: (a) non-contiguous mesh, coarse plate

mesh; and (b) non-contiguous mesh, re�ned plate mesh.
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Figure 4. (a) Isotherms for non-contiguous mesh, applied �ux to plate, Tmax = 1787:0, 20 contours; and
(b) isotherms for non-contiguous mesh, �xed temperature on plate, Tmax = 1000:0, 20 contours.

subjected to a convection boundary condition. Because no boundary conditions are speci�ed
on the lateral surfaces of the components and plate, these surfaces are insulated. Several
increasingly re�ned horizontal meshes for the plate were developed while holding the block
meshes and vertical plate discretization constant, see Figure 3(b). A simple integration of
the surface heat �uxes through the tops of the blocks and horizontal plate surfaces allowed
the overall energy balance to be veri�ed and the accuracy of the partially covered=exposed
element algorithm to be evaluated. A re�ned, contiguously meshed geometry (not shown) was
also produced to help verify the solution.
Figure 4 shows isotherm plots for the least re�ned of the plate meshes; the two plots

correspond to the two di�erent boundary condition cases of an applied �ux and a �xed
temperature. The continuity of the temperature between the blocks and the plates is easily
seen. Continuity was also veri�ed by comparing temperature pro�les on the joined surfaces.
The penalty form of the multipoint constraint provides an accurate implementation. With the
plate and block conductivities as shown in Figure 3, penalty parameter scaling factors of
106�61000 could be used with no signi�cant change in the solution. Shown in Table I is
a compilation of the �ux results with mesh re�nement in the plate. The improved resolution
of the exposed plate area leads to a better energy balance for the model, though even at
the coarsest plate mesh the solution is quite accurate. Note that the primary bene�t to using
the multipoint constraint approach for meshing is the ease with which the geometry can
be changed. In the present simulation, the locations of the blocks can be altered without
remeshing and blocks added or subtracted. Such geometry changes using a contiguous mesh,
especially with brick elements, is a signi�cantly more complex process. Also, note that the
�nite element approximation and topology within each region could be varied independently
without the need to employ transition elements.

3.2. Driven cavity

The second static example demonstrates the multipoint constraint algorithm with incompress-
ible, viscous �ow in the standard lid-driven cavity con�guration. Shown in Figure 5 are three
meshes used to solve the isothermal �ow in a unit cavity at a Reynolds number of Re=100.
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Table I. Parameter variations with mesh re�nement for the thermal conduction
in blocks stacked on a plate.

Exposed surface Total energy Tmax
Mesh parameters area for plate Heat �ux— transfer for the

Case for plate (computed) top of plate (% error) assembly

Non-contiguous—
1 67 surface elements 76.832 9.989 965.49 1786.77

(2.98%)
Non-contiguous—

2 258 surface elements 76.223 9.871 951.484 1781.05
(1.49%)

Non-contiguous—
3 1004 surface elements 76.401 9.865 951.630 1779.38

(1.51%)
Non-contiguous—

4 3645 surface elements 76.483 9.884 952.651 1782.39
(1.62%)

Contiguous—
5 3081 surface elements 76.447 9.841 949.507 1780.61

(1.28%)
Exact — 76.465 — 937.50 —

Results are for the case of an applied heat �ux.

For this simulation, each mesh region contains nine node, quadratic velocity elements from
a mixed, �nite element formulation. Both continuous, bilinear pressure (Q2Q1) elements and
discontinuous, linear pressure (Q2P−1) elements were tested. Clearly, the Q2P−1 element only
requires constraints on the velocity components, while the Q2Q1 element has constraints on
velocity and pressure. For each of the meshes shown, the two upper corner elements at the
sliding lid were altered by moving the midside node on the vertical wall to the quarter point
of the element edge. With a unit velocity speci�ed on the cavity lid, this alteration results
in ‘closed’ cavity. That is, the integral of the horizontal velocity over the vertical element
surfaces is zero.
Typical stream function and velocity magnitude contour plots for each of the meshes are

shown in Figures 6 and 7; these results are for the Q2P−1 element. For the non-contiguous
mesh cases, small o�sets in the streamlines are visible since there is no constraint on the
stream function; the stream function is computed by line integration of the velocity �eld
around each element. The maximum values of the stream function are noted in Figure 6 and
show excellent agreement among the various mesh con�gurations. The maximum error in the
element mass balance (as determined from the stream function computation) is ∼ 10−9 and is
insensitive to the mesh and penalty parameters used in the constraint. The velocity magnitude
plots in Figure 7 show the expected continuity of the velocity components as enforced by
the multipoint constraint. Figure 8 shows the vertical velocity component plotted along both
sides of the mesh interface (two region mesh) for the case where the �ner (slave) mesh is
tied to the coarser (master) mesh region. Figure 9 shows the same pro�les when the coarser
(slave) mesh is tied to the �ner (master) mesh. Though the pro�le is decidely less smooth in
the second case, the overall �eld solution and element mass balances are very comparable to
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Figure 5. Meshes used for the lid-driven cavity problem: (a) two region, non-contiguous mesh;
(b) three region non-contiguous mesh; and (c) contiguous mesh.

the smoother case from Figure 8 and the contiguous mesh result. The practice of tying the
�ner mesh to the coarser mesh is clearly recommended.

3.3. Cylinder on a plate

The simple problem of a end-heated cylinder sliding over a plate is used to demonstrate the
repeated use of the node-in-mesh search and dynamics in the partially exposed element surface
computation. A mesh for the initial state is shown in Figure 10 where the cylinder is stationary

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:471–489



482 D. K. GARTLING

Figure 6. Stream function contours for lid-driven cavity at Re=100: (a) two region mesh,
�max = 0:10333; (b) three region mesh, �max = 0:10326; and (c) contiguous mesh, �max = 0:10331.

and in contact with the plate. The top end of the cylinder is heated with a constant, spatially
uniform surface �ux. After a short time delay, the heated cylinder slides along the plate (no
frictional heating) with a constant velocity and describes an L-shaped trajectory; the cylinder is
lifted from the plate at the end of the horizontal motion and becomes motionless. The bottom
of the plate is cooled by convection. The cylinder is ‘tied’ to the plate through a heat transfer
or contact resistance coe�cient. During each time step, each node of the contacting cylinder
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Figure 7. Velocity magnitude contours for lid-driven cavity at Re=100: (a) two region mesh;
(b) three region mesh; and (c) contiguous mesh.

face is located in the plate mesh and a plate or reference temperature found by interpolation
for use in the cylinder boundary condition. Likewise, each node in the plate, covered by the
cylinder footprint, is located in the cylinder; a cylinder or reference temperature is interpolated
for the convection boundary condition applied to the plate. Quadrature points in the plate
elements are also searched and �agged as covered or exposed.
The time-dependent thermal conduction problem is solved with the well-known implicit,

predictor–corrector, integration algorithm due to Gresho et al. [30]. Multiple corrections within
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Figure 8. Vertical velocity pro�le along mesh interface for two region
cavity. Coarse mesh is tied to �ne mesh.

Figure 9. Vertical velocity pro�le along mesh interface for two region cavity.
Fine mesh is tied to coarse mesh.

a time step are required to iterate the explicitly formed thermal contact condition and ensure
equilibrium. An implicit formulation of the contact boundary condition could be developed
but is more complex with a need for connectivity and matrix structure updating.
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Figure 10. Mesh for heated cylinder sliding along a plate with a contact resistance.
Cylinder is at the initial position.

Figure 11. Isotherms at various times during the motion of a cylinder sliding on a plate.
The cylinder has lifted from the plate in the last frame: (a) time=4 s; (b) time=11 s;

(c) time=19 s; (d) time=25 s; (e) time=34 s; and (f) time=37 s.

A series of isotherm plots is shown in Figure 11 for various times during the motion of
the cylinder. The isotherm levels are the same for each plot. The cylinder has lifted from the
plate in the last frame, at which point the plate cools and the cylinder heats due to the now
insulated condition on the bottom surface of the cylinder.

3.4. Rotating impeller

A moving mesh, viscous �ow problem is the last example and simulates the �ow in a sim-
pli�ed, two-dimensional impeller geometry as shown in Figure 12. The three-bladed impeller
rotates at a constant angular velocity after a short, constant acceleration from rest. The upper
inlet channel has a speci�ed in�ow velocity and the outlet boundary condition is a parallel
�ow with a uniform normal stress distribution. The problem is designed to illustrate the utility
of the sliding mesh implementation and is not the analysis of a realistic �ow device.
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Figure 12. Mesh for simpli�ed impeller. Fixed mesh region is dark
grey; rotating mesh region is light grey.

A sliding surface is located at the mid-radius of the gap between the blade tip and the
outer wall. In Figure 12, the mesh region with the darker shading is �xed and the inner, more
lightly shaded mesh rotates with the blades. Note that multipoint constraint surfaces are also
used to attach the channel regions to the �xed cylindrical mesh, thus reducing the complexity
of mesh generation.
As a precursor to the more complex problem outlined above, a smooth annular gap problem

was simulated to check the sliding mesh algorithm against a problem that could be solved
with simple boundary conditions. The annular gap �ow was solved on a contiguous mesh with
a time-dependent tangential velocity speci�ed on the outer cylinder wall; the inner cylinder
was stationary. This solution was compared to a sliding mesh, ALE solution where the outer
half of the gap mesh was attached to the outer wall and rotated with respect to the stationary
inner mesh. The solutions for the two cases were essentially identical, though the ALE method
required more computational e�ort. Both cases were integrated with an adaptive time step,
predictor–corrector method [30] with the same integration tolerance and an allowance for
multiple (Newton) corrector iterations. The contiguous mesh problem generally required one
Newton correction per time step while the sliding mesh, ALE solution needed two Newton
corrections per step and ran at a generally smaller time step. This is not unexpected, as the
predictor solution is from the geometry of the previous step, which di�ers signi�cantly from
the corrected solution, and results in a smaller time step being selected for a given tolerance.
A better method uses a reasonable �xed time step (after the start-up transient) that requires
only two Newton corrections per step to ensure convergence. However, this requires some
experimentation to select the appropriate time step.
The transient impeller �ow was computed using the adaptive time-step integration algorithm

with a one-step Newton corrector. The Q2P−1 element was used throughout the mesh. The
simulation was carried out for two revolutions of the impeller. Shown in Figure 13 are a series
of instantaneous streamline plots superimposed on the updated mesh. The streamlines shown
were initiated at the inlet plane and on the impeller blades; the colour map for the streamlines
indicates the �uid speed. The �rst three timeplanes shown are just after the rotation begins
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Figure 13. Streamlines at various times during the rotation of the impeller on the up-
dated mesh: (a) time=1:019 s; (b) time=2:105 s; (c) time=3:134 s; (d) time=5:175 s;

(e) time=7:273 s; and (f) time=8:888 s.

and a blade has not yet passed the inlet section. The remaining three frames are for times
when an impeller blade is approaching and passing the inlet. At these times, the �ow has
already reached a periodic behaviour. The time-dependent nature of the �ow can be better seen
from time history plots of the velocity at various points in the �eld. Shown in Figure 14 are
velocity magnitudes as a function of time for three locations; the selected points are labelled
in Figure 12 and are at the mid-channel height where the inlet and outlet meet the cylindrical
part of the mesh and at a mid-gap radius on the cylinder horizontal diameter. Data points are
sampled every 25 time steps, which leads to some roughness in the time histories. The graph
con�rms the rapid establishment of a time periodic process.

4. CONCLUSIONS

The present work has demonstrated the feasability and utility of multipoint constraints for
problems involving rigid body motions in �uid and thermal analysis. The implementation was
also shown to be useful as a general meshing method through the use of non-contiguous mesh
patches. The essential parts of the algorithm are an e�cient, node-in-mesh search method and
the use of penalty type constraints to enforce continuity of the primary variables. A simple
method for considering partially covered=exposed element faces involved in boundary condi-
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Figure 14. Time histories for three points within the impeller; point locations correspond
to the labelled points shown in Figure 12.

tions was also outlined and demonstrated. Future reports will demonstrate the e�ectiveness of
these methods for more complex non-isothermal analyses.
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